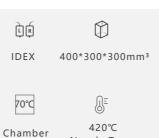


Consumer-grade or Professional-grade

The strength **gap** in 3D printing is far greater than you might imagine



A Comprehensive Comparison from Model to Material

Pro-grade

Nozzle Temp

Consumer-grade

Chamber

300℃

Nozzle Temp

Test Filament

- ABS High strength & toughness, ideal for mechanical tests.
- ASA ABS-like strength, excellent UV/weather resistance.

D600 Pro2 HS

VS

H₂D

Enterprise-grade

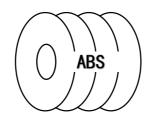
Pro-grade

Test Filament

PA-CF High rigidity, heat resistance, but moisture-absorbent.

Nozzle Temp

PET-CF High rigidity, stability, creep resistance, for precision parts.

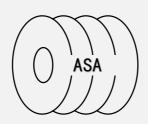

Test Content

Each group of printers uses corresponding consumables to print test specimens in the XY direction and Z direction for comparison.

F430 NX

VS

X1C

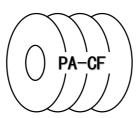

XY Direction Comparison

Z Direction Comparison

F430 NX

VS

X1C

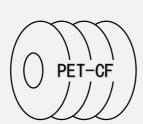


XY Direction Comparison

Z Direction Comparison

XY Direction Comparison

Z Direction Comparison

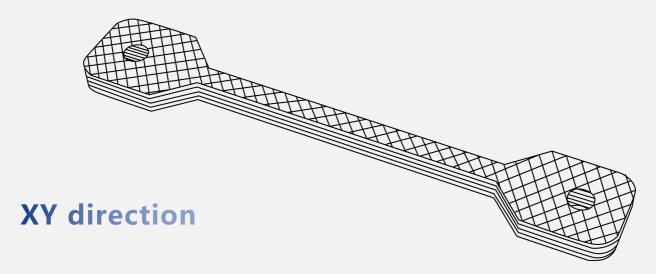

D600 Pro2 HS

VS

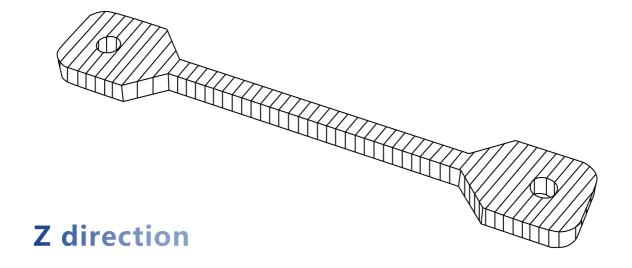
H₂D

XY Direction Comparison

Z Direction Comparison

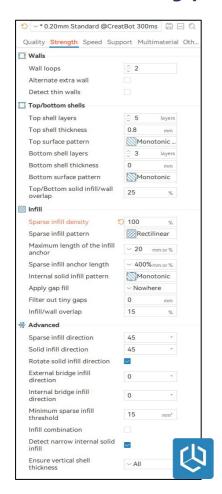


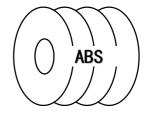
D600 Pro2 HS

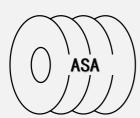

VS

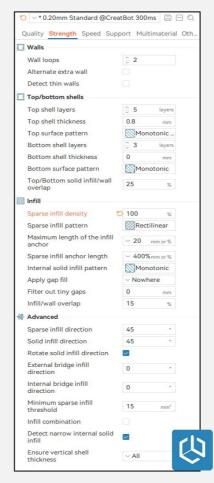
H₂D

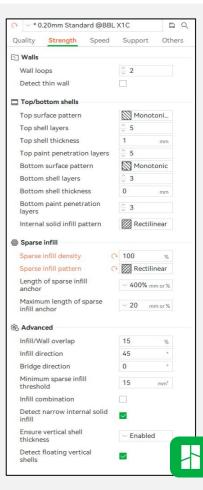
Print specialized test specimen models.


Place the specimen's XY direction as the force-bearing direction (printed lying flat) and compare strength and cross-sectional properties.

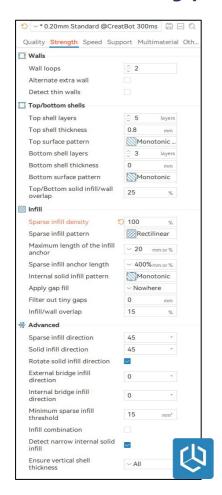

Place the specimen's Z direction as the force-bearing direction (printed standing upright) and compare strength and cross-sectional properties.

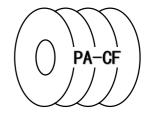

X1C

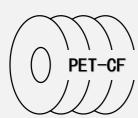

Identical slicing parameters for both printers in each group.

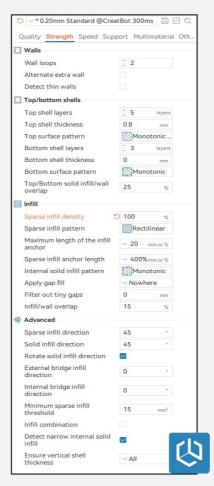


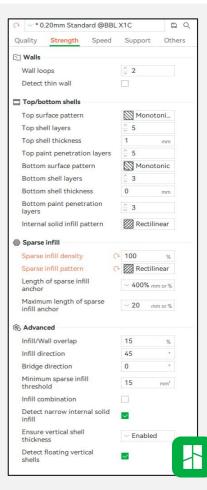
Quality Strength Speed	Support Others		
™ Walls			
Wall loops	<u>^</u> 2		
Detect thin wall			
☐ Top/bottom shells			
Top surface pattern	Monotoni		
Top shell layers	÷ 5		
Top shell thickness	1 mm		
Top paint penetration layers	≙ 5		
Bottom surface pattern	Monotonic		
Bottom shell layers	÷ 3		
Bottom shell thickness	O mm		
Bottom paint penetration layers	⇒ 3		
Internal solid infill pattern	Rectilinear		
Sparse infill	1		
	100 %		
	Rectilinear		
Length of sparse infill anchor	∨ 400% mm or %		
Maximum length of sparse infill anchor	∨ 20 mm or %		
Advanced			
Infill/Wall overlap	15 %		
Infill direction	45 °		
Bridge direction	0 °		
Minimum sparse infill threshold	15 mm²		
Infill combination			
Detect narrow internal solid infill	▽		
Ensure vertical shell thickness	~ Enabled		
Detect floating vertical			








Identical slicing parameters for both printers in each group.



Quality Strength Speed	Support Others			
	Support Others			
Walls ■ Walls Walls				
Wall loops	÷ 2			
Detect thin wall				
Top/bottom shells				
Top surface pattern	Monotoni			
Top shell layers	♀ 5			
Top shell thickness	1 mm			
Top paint penetration layers				
Bottom surface pattern	Monotonic			
Bottom shell layers	_ 3			
Bottom shell thickness	0 mm			
Bottom paint penetration layers	⊕ 3			
Internal solid infill pattern	Rectilinear			
Sparse infill				
	100 %			
Section 1997 Section 1997	Rectilinear			
Length of sparse infill anchor	~ 400% mm or %			
Maximum length of sparse infill anchor	∨ 20 mm or %			
% Advanced				
Infill/Wall overlap	15 %			
Infill direction	45 °			
Bridge direction	0 .			
Minimum sparse infill threshold	15 mm²			
Infill combination				
Detect narrow internal solid infill	▽			
Ensure vertical shell thickness	~ Enabled			
Detect floating vertical				

Setup Principle

Fix the load gauge to the frame and secure the specimen to the sliding platform. Connect the load gauge hook to the specimen.

The motor drives the ball screw to move the platform upward at a constant speed until the specimen fractures.

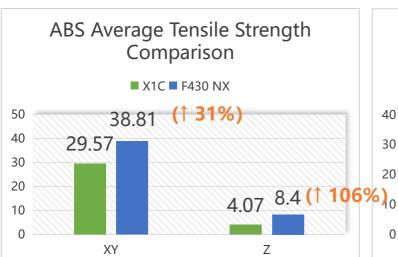
Record the peak load value at fracture.

- Print at least 3+ samples each for XY and Z directions per material to minimize errors.
- Load gauge unit: kg.
- Calculate the average tensile strength and compare strength percentages.

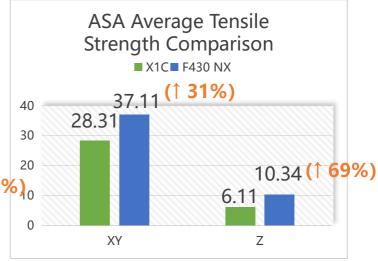
Model/ABS	Direction	Specimen 1	Specimen 2	Specimen 3	Average
F430 NX	XY				38.81kg
X1C	XY				29.57kg
F430 NX	Z				8.40kg
X1C	Z				4.07kg

Model/ ASA	Direction	Specimen 1	Specimen 2	Specimen 3	Average
F430 NX	XY				37.11kg
X1C	XY	N. S.			28.31kg
F430 NX	Z				10.34kg
X1C	Z				6.11kg

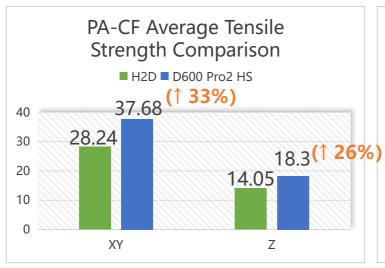
注释:可放大查看每个样本的拉断瞬间数值

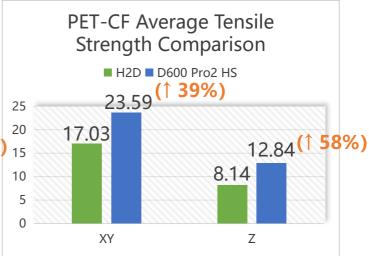


Model// PA-CF	Direction	Specime n1	Specimen 2	Specim en 3	Average
D600 Pro2 HS	XY				37.68kg
H2D	XY				28.24kg
D600 Pro2 HS	Z				18.30kg
H2D	Z		.0.		14.05kg
Model/ PET-CF	Direction	Specimen1	Specimen 2	Specimen 3	Average
D600 Pro2 HS	XY				23.59kg
H2D	XY	.0		0	17.03kg
D600 Pro2 HS	Z				12.84kg
H2D	Z				8.14kg


注释:可放大查看每个样本的拉断瞬间数值

Test Data Summary





Test materials	Test direction CreatBot VS bambu Lab		Strength increase
ABS	XY direction	F430 NX vs. X1C	+31%
Ads	Z direction	F430 NX vs. X1C	+106%
ACA	XY direction	F430 NX vs. X1C	+31%
ASA	Z direction	F430 NX vs. X1C	+69%
DA CE	XYdirection	D600 Pro2 HS vs. H2D	+33%
PA-CF	Z direction	D600 Pro2 HS vs. H2D	+26%
PET-CF	XY direction	D600 Pro2 HS vs. H2D	+39%
	Z direction	D600 Pro2 HS vs. H2D	+58%

What This Data Means for You?

Z-Axis Strength is the Benchmark of Industrial Grade:

A up to 106% improvement means parts from consumer-grade 3D printers are like a fragile stack of cards with weak interlayer adhesion. CreatBot's fully enclosed, high-temperature chamber ensures powerful layer bonding, manufacturing reliable parts that are robust in all directions.

Achieving Nearly "Isotropic" Reliability:

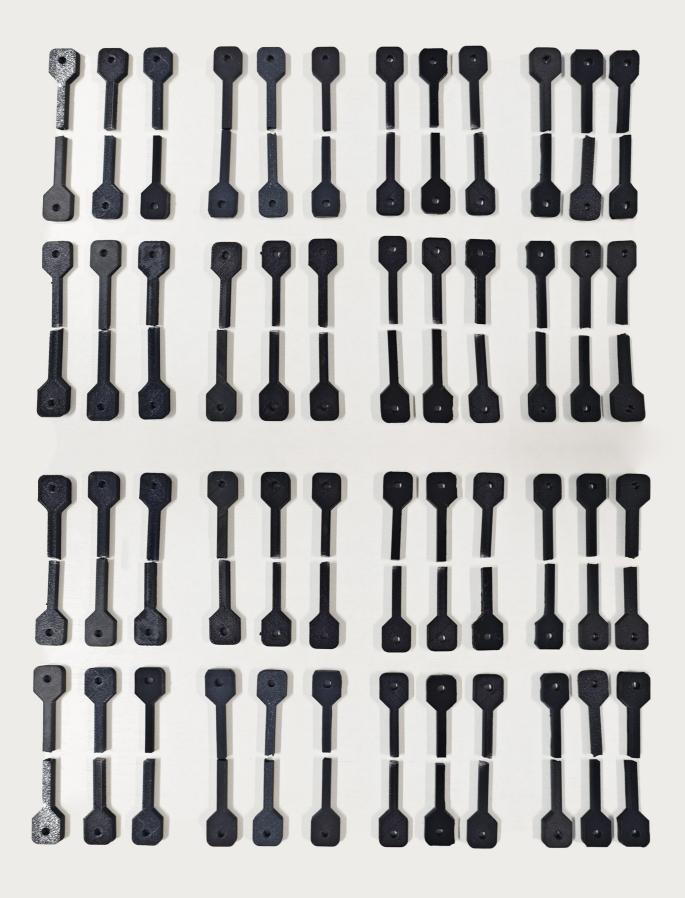
We significantly minimize the inherent "anisotropy" weakness of 3D printing. This allows the components you design to deliver stable, predictable performance regardless of load direction, meeting the demands of rigorous industrial applications.

Unlocking the True Potential of Engineering Materials:

Only industrial-grade equipment provides the stable, high-temperature environment required by high-performance materials like PA-CF and PET-CF. This ensures your investment in materials translates into their intended performance.

F430 NX VS X1C-comparison of XY/Z direction cross-sections of test specimens

ABS	Dire ction	Specimen 2	Specimen 3	ASA	Direc tion	Specimen 1	Specimen 2	Specimen 3
F430 NX	XY			F430 NX	XY			Maintan Control of the Control of th
X1C	XY			X1C	XY			
F430 NX	Z			F430 NX	Z			
X1C	Z			X1C	Z			


Stress whitening observed in cross-sections — This phenomenon, known as "stress whitening," is a typical characteristic of engineering plastics.

D600 Pro2 HS vs H2D-comparison of XY/Z direction cross-sections of test specimens

PA-CF	Directi on	Specimen 1	Specimen 2	Specimen 3	PET-CF	Directi on	Specimen1	Specimen2	Specimen3
D600 Pro2 HS	XY				D600 Pro2 HS	XY			
H2D	XY				H2D	XY	Name of the second seco	Manager Land	
D600 Pro2 HS	Z				D600 Pro2 HS	Z			
H2D	Z				H2D	Z			

Note: Cross-sections of each sample may be enlarged for viewing.

Broken test spline samples

Do you know how to choose the right 3D printer?